Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38610989

RESUMO

Inhibition of menin in acute myeloid leukemia (AML) harboring histone-lysine-N-methyltransferase 2A rearrangement (KMT2Ar) or the mutated Nucleophosmin gene (NPM1c) is considered a novel and effective treatment approach in these patients. However, rapid acquisition of resistance mutations can impair treatment success. In patients with elevated retinoic acid receptor alpha (RARA) expression levels, promising effects are demonstrated by the next-generation RARalpha agonist tamibarotene, which restores differentiation or induces apoptosis. In this study, the combination of revumenib and tamibarotene was investigated in various KMT2Ar or NPM1c AML cell lines and patient-derived blasts, focusing on the potential synergistic induction of differentiation or apoptosis. Both effects were analyzed by flow cytometry and validated by Western blot analysis. Synergy calculations were performed using viability assays. Regulation of the relevant key mediators for the MLL complex were quantified by RT-qPCR. In MV4:11 cells characterized by the highest relative mRNA levels of RARA, highly synergistic induction of apoptosis is demonstrated upon combination treatment. Induction of apoptosis by combined treatment of MV4:11 cells is accompanied by pronounced induction of the pro-apoptotic protein BAX and a synergistic reduction in CDK6 mRNA levels. In MOLM13 and OCI-AML3 cells, an increase in differentiation markers like PU.1 or a decreased ratio of phosphorylated to total CEBPA is demonstrated. In parts, corresponding effects were observed in patient-derived AML cells carrying either KMT2Ar or NPM1c. The impact of revumenib on KMT2Ar or NPM1c AML cells was significantly enhanced when combined with tamibarotene, demonstrating synergistic differentiation or apoptosis initiation. These findings propose promising strategies for relapsed/refractory AML patients with defined molecular characteristics.

2.
Microbiol Spectr ; 11(6): e0086723, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37909735

RESUMO

IMPORTANCE: Since its discovery, Ln-dependent metabolism in bacteria attracted a lot of attention due to its bio-metallurgical application potential regarding Ln recycling and circular economy. The physiological role of Ln is mostly studied dependent on presence and absence. Comparisons of how different (utilizable) Ln affect metabolism have rarely been done. We noticed unexpectedly pronounced changes in gene expression caused by different Ln supplementation. Our research suggests that strain RH AL1 distinguishes different Ln elements and that the effect of Ln reaches into many aspects of metabolism, for instance, chemotaxis, motility, and polyhydroxyalkanoate metabolism. Our findings regarding Ln accumulation suggest a distinction between individual Ln elements and provide insights relating to intracellular Ln homeostasis. Understanding comprehensively how microbes distinguish and handle different Ln elements is key for turning knowledge into application regarding Ln-centered biometallurgy.


Assuntos
Elementos da Série dos Lantanídeos , Elementos da Série dos Lantanídeos/metabolismo , Bactérias/genética , Bactérias/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...